
Tutorial on FinSimMath(TM)

(an extension of Verilog(R) for Mathematical Descriptions)

by Alec Stanculescu, PhD
Fintronic USA, Inc.

San Mateo CA - July 24, 2009
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 1

FinSimMath(TM)

an extension of Verilog(R) for Mathematical
Descriptions

OUTLINE

1. Introduction
2. Overview of FinSimMath
3. Basic FinSimMath
4. Hierarchical Expressions Evaluation
5. Cartesian and Polar Types
6. Operations on Multi-dimensional Arrays
7. Practical Exercises Written in FinSimMath
8. Concluding Remarks
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 2

1. Introduction
FinSimMath’s creation was motivated by the need for having
mathematical modeling within the Verilog language. This lan-
guage was designed with the intent that (1) no explicit conver-
sion functions are necessary, (2) runtime changes of formats
including the number of bits of the various fields are supported,
and (3) data in multi-dimensional arrays are easy to access glo-
bally.

FinSimMath suports a large number of mathematical system
tasks, and provides access to information regarding the occur-
rence of overflow, underflow, maximum number of bits needed,
and cummulative error.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 3

2. Overview of FinSimMath
FinSimMath is an extension of the IEEE std 1364 Verilog lan-
guage which supports also the types VpDescriptor, VpReg (for
variable precision objects), VpCartesian, VpPolar, VpFCarte-
sian, and VpFPolar types. Logical, Arithmetic and assignment
operators are defined to operate on all combination of these types
including on arrays and matrixes.

Objects of the variable precison types VpReg, VpCartesian, and
VpPolar can have their formats (fixed or floating) and the sizes
of the format fields modifiable at runtime. This allows for a tight
loop in finding optimal formats and sizes of sub-fields, given
various costs based on computation accuracy, overflow avoid-
ance, quantization noise, power consumption (switching activ-
ity), or other resource constraints.

 Global writing to and reading from multi-dimensional arrays are
supported using positional system tasks for each range within the
system tasks $InitM and $PrintM.

A general form of aliasing using positional system tasks for each
dimension of a multi-dimensional array is introduced with the
View as construct, enabling to declare multi-dimensional arrays
that are contained within an already declared multi-dimensional
array. Using this capability one can separate data from its actual
location within a multi-dimensional array.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 4

A rich mathematical environment is available based on a number
of system functions and tasks, including: $VpSin, $VpCos,
$VpTan, $VpCtan, $VpAsin, $VpAcos, $VpAtan, $VpActan,
VpSinh, $VpCosh, $VpTanh, $VpCtanh, $VpAsinh, $VpAcosh,
$VpAtanh, $VpActanh,$VpPow, $VpPow2, $VpLog, $VpLn,
$VpAbs, $VpFloor, $VpHypot, $VpFft, $VpIfft, $VpDct,
$VpIdct, $VpNormAbsMax, $VpNormAbsSum, $VpNorm-
RMS, $VpDistAbsMax, $VpDistAbsSum, etc.

3. Basic FinSimMath

3.1 Declaring VP objects/data

VpReg is a predefined type. Objects of this type can have their
formats modifiable at runtime.
The size of the packed data is the maximum size that the object
can have during the simulation.

VpReg [0:511] mySecondReg;
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 5

3.2 Declaring VP descriptors

VpDescriptor is a predefined type. Objects of this type can store
information regarding the format of data objects associated to it.

VpDescriptor mySecondDescriptor;

3.3 Associating VP descriptors to VP data

Before being used a VP data must be associated to a descriptor
via a call to the system task

$VpAssociateDescriptorToData(data,
 descriptor);
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 6

3.3 Semantics of the fields of VP descriptors
The macroes below are defined in finsimmath.h which can be
included in any Verilog module to be simulated by FinSim.

Field 1: Size of integer part for fixed point or size of exponent
plus one for floating point.
Field 2: Size of fractional part for fixed point or size of mantissa
for floating point.
Field 3: Format options:
`define TWOS_COMPLEMENT 1
`define SIGN_MAGNITUDE 2
`define FLOATING 3

Field 4: Rounding options:
`define TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF 1
`define TO_NEAREST_INTEGER_IF_TIE_TO_PLUS_INF 2
`define TO_NEAREST_INTEGER_IF_TIE_TO_ZERO 3
`define JUST_TRUNCATE 4
`define TO_ZERO 5
`define TO_INF 6
`define TO_MINUS_INF 7
`define TO_PLUS_INF 8

Field 5: Overflow options:
`define SATURATION 1
`define NORMAL 2
‘define WARNING 64

Field 6: Various flags:
`define REPORT_SPECIAL_CONDITION 64
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 7

3.4 Modifying fields of VP descriptors
Predefined values of fields of type VpDescriptor are declared in
finsimmath.h which can be included in any FinSimMath model:
‘include “finsimmath.h”

 The size of the formats can be changed during the execution of
the simulation, by using the system tasks
$VpAssociateDescriptorToData(data,
 descriptor),
$VpSetDescriptorInfo(descriptor, field1,
field2, field3, field4, field5, field6),

and

$VpSetDefaultOptionsfield1, field2, field3,
field4, field5, field6).

3.5 Assigning Verilog expressions to VP
objects.
Verilog expressions are evaluated and their values placed in the
VP object according to the information present in the associated
descriptor.

For example:

op1 = op2 + op3;
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 8

will perform the addition of the values in op2 and op3 and place
the result in op1, where op1, op2, and op3 may have any scalar
type: VpReg, real, integer, literal real, literal integer.

The same expression will perform the addition in case op1, op2,
and op3 are of any of the types: VpComplex, VpPolar, VpFCom-
plex, VpFPolar.

The same expression will perform the addition in case op1, op2,
and op3 are matrixes of compatible sizes where the elements can
be either scalar or of the four Cartesian and Polar types.

3.6 Assigning VP objects to Verilog objects

Assignements to objects of type real result in the object of type
real having a value as close as possible to the value being
assigned.

Assignements to objects of type integer or reg result in the object
on the left hand side containing the same bit patern as the object
on the right hand side.

3.7 Displaying VP objects
The Verilog system tasks for displaying objects have been
extended with the following format representations:
 - %y: real number representation,
 - %k: hex representation
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 9

 - %h: binary representation

3.8 Logical and Arithmetic Operators

Verilog standard arithmetic operators (+,-,*,/,**) may be
used in conjunction with variable precision objects (including
cartesian and polar objects), as well as with multidimensional
arrays of such objects, without the need of explicit conversion
functions.

Verilog standard logical operators (>, >=, <, <=, ==, !=) may be
used in conjunction with variable precision objects.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 10

4. Hierarchical Evaluation of
Expressions
Scalar objects may be used in hierarchical expressions. Subex-
pressions are evaluated in temporary VP objects. The evaluation
is governed by the default descriptor information, as well as by
the descriptors of the operands where applicable. The descriptor
of the operands are used in a way in which to minimize possible
errors due to overflow or underflow.

FinSim does not yet support hierarchical expression with oper-
ands that are multi-dimensional arrays. Such expressions must be
split into simple expressions, each having at most one operator.

Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 11

5. Cartesian and Polar Types

5.1 VpCartesian
This type consists of two VP fields and objects of this type must
be associated to a descriptor before usage. The two fields repre-
sent cartesian co-ordinates and are treated as such by the opera-
tors operating on them.

5.2 VpPolar
 This type consists of two VP fields and objects of this type must
be associated to a descriptor before usage. The two fields repre-
sent polar co-ordinates and are treated as such by the operators
operating on them.

5.3 VpFCartesian
This type consists of two fields of type real which represent car-
tesian co-ordinates.

5.4 VpFPolar
This type consists of two fields of type real which represent polar
co-ordinates.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 12

5.5 Operations on types Cartesian and Polar
+, -, *, /, **,==, !=

5.6 Mixing Cartesian and Polar operands in
the same simple expression

myPolar = {1.0, $VpGetPi()};
myCart = {1.0, 1.0};
myCart = myCart + myPolar;
$display(“myCart.Re = %y\n”, myCart.Re);

will print: myCart.Re= 0.0
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 13

6. Multi-dimensional Arrays

6.1 +,-,*,/, **
 These operators are defined on two dimensional arrays.

Usual constraints are placed on the sizes of each dimension:
a) for + and - the sizes of each dimension must be the same.
b) for * and / the size of the second dimension of the first oper-
and must be equal to the size of the first dimension of the second
operand.
c) No constraints are imposed on the operand of **, as both the
inverse and the pseudo inverse operations are supported.

Note: Currently, FinSim has a limit of 4000 for the size of one
dimension of a matrix, unless a call to $ToSparse(matrix) occurs
at the beginning of an initial block. In such a case, FinSim works
for matrices of up to 40,000,000 by 40,000,000.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 14

6.2 Accessing copied data via position sys-
tem tasks
This is achieved using the system task $InitM(myMem, value),
where value stands for an expression in terms of system func-
tions $I1 through $In with n being the number of dimensions of
myMem. $In represents the index of the n-th dimension of the
current location.

The effect of the call is that for all combinations of indexes
myMem[$I1]..[$In] = value.

For complex operands (e.g. VpPolar) value stands for two argu-
ments, one for each element of the complex object.

For example:
$InitM(myMem, oMem[$I2][$I1]);
$InitM(myPMem, pMem[$I2][$I1].Mag,
 Mem[$I2][$I1].Ang);

Will result in the two dimensional arrays myMem and myPMem
receiving the data of the transposed of the two dimensional
arrays oMem and pMem respectively.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 15

6.3 Creating views of multi-dimensional data

A view declaration creates an object which when referenced rep-
resents data selected from another multi-dimensional array
whithout copying the data, as in the exmaple below:

real myMem[0:SIZE-1][0:SIZE-1];
View real myView[0:SIZE-1][SIZE-1] as
myMem[$I2][$I1];

$I1, and $I2 in the View construct represent the position of each
element within the view declaration (myView in this example).

As a result of the above View declaration any reference to
myView or to any of its elements will get the transposed of
myMem. However, the data is not copied and therefore any writ-
ing to myView will change myMem.

6.4 Displaying multi-dimensional data

This is achieved using $PrintM(myMem, format) where format
stands for “%y” with y being the format in which the elements of
myMem will be displayed.

6.5 Norm and Distance

FinSimMath supports the following norms:
- $VpNormAbsMax(matrix) - maximum absolute value of all
elements
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 16

- $VpNormAbsSum(matrix) - sum of absolute values of all ele-
ments

- $VpNormRMS(matrix) - square root of sum of squares of each
element divided by the number of elements

FinSimMath supports the following distances:
- $VpDistAbsMax(matrix) - the difference between the maxi-
mum absolute value of each matrix.

- $VpDistAbsSum(matrix) -sum of absolute differences between
the corresponding values of two matrices

6.6 Sparse Matrices

Matrices can be declared sparse by calling $SpSparse(matrix) at
the begining of an initial block. Operations on such matrices are
a little slower than on regular matrices, however they can be
much larger. Version 10_04_00 or higher support at least 40,000
by 40,000.

The following functions are support for accessing sparse matri-
ces:

- $SpReadNextNzElemInLine(matrix, line, col, idx, value),
where the inputs are matrix, line, and idx and the outputs are col,
idx and val. To obtain the first element in a line one must set idx
to -1. Upon execution idx will contain the handle to the next non-
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 17

zero element, col will contain the column of that element and val
the value of that element.

- $SpReadNextNzElemInCol(matrix, line, col, value), where the
inputs are matrix, line, and col and the outputs are line and value
of teh next non-zero element. To obtain the first element in a col-
umn one has to set the variable line to -1.

- $SpNulifyLine(matrix, line) - sets to zero all elements of the
line indicated by line.
- $SpNulifyCol(matrix, col) sets to zero all elements of the col-
umn indicated by col.

- $SpExchangeLine(matrix, line) - exchanges line indicted by
line with line zero.

-$SpExchangeCol(matrix, col) - exchanges column indicated by
col with column zero.

6.7 Associative matrices

A matrix can be declared to be associative by a call to $SpToAs-
sociative(matrix) at the beginning of an initial block.
The following system tasks can accept as arguments associative
matrices:

- $SpAssocGetNext(matrix, val, line, col, idx) - has as inputs
matrix, val and idx and as outputs line, col and idx of the next
element having the value val. In order to obtain the first element
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 18

which has the value val one must set idx to -1. The order in
which the elements are obtained is the lower line first and if the
lines are the same the lower column first.

 6.8 Solving Differential Equations

Support for solving differential equations is provided by the sys-
tem task $VpLODE(order, nrEq, h, nr_pts_per_ct_coef+1, x_ct,
coef, Fe_ct, y_ct, ressymb), where:
- order indicates the order of the differential equation, i.e. the
highest derivative that is involved,
- nrEq indicates the number of equations,
- h is the double of the sampling period
- nr_pts_per_ct_coef is the size of the sampled data,
- x_ct is a two dimensional array which contains the solution after
the execution of the system task, whereas the array x_ct[0] contains
the initial conditions,
- coef is an array which contains the value of the coefficients of the
equation,
- Fe_ct is a two dimensional array containing the samples of the val-
ues that are independent of the functions to be found,
- y_ct is a two dimensional array containing after the execution of the
system task the first derivative of the solution in case the order is
two or a three dimensional array containing the the first and subse-
quent derivatives till order-1. Note that before the call, the initial
conditions have be be provided in y_ct[0],
- ressymb is a an array which contains the symbolic values if they
exist.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 19

Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 20

7. Practical Exercises Written in
FinSimMath
These examples are running on Super FinSim version 10_0_0
or subsequent versions.

FinSimMath may be usable in the future in conjunction with
other standard compliant Verilog or SystemVerilog simulators.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 21

7.1 Example of Verilog modules
exchanging VP values
Instances of modules may exchange values either via external
references or via ports. The example below shows how module
top instantiates a module VpAdd and passes to it two operands to
be added.

Note that the passing of vp data via ports is done while making
sure that the data objects in both the instantiating module and the
instantiated module use descriptors with the same formats and
same size for the corresponding fields of the formats.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 22

module vpadd(in1w, in2w, out);
input in1w;
input in2w;
output out;
(* varprec = data *)
wire [0:511] in1w;
(* varprec = data *)
wire [0:511] in2w;
(* varprec = data *)
wire [0:511] out;
VpDescriptor d1;
VpReg [0:511] in1;
VpReg [0:511] in2;
VpReg [0:511] outR;

initial begin
 $VpSetDescriptorInfo(d1, 256, 96,`TWOS_COMPLEMENT,
 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,
 `SATURATION, 1);
 $VpAssocDescrToData(in1, d1);
 $VpAssocDescrToData(in2, d1);
 $VpAssocDescrToData(outR, d1);
end
assign out = outR;
always @(in1w or in2w)
begin
in1 = in1w;
in2 = in2w;
outR = in1 + in2;
end
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 23

module top;
VpReg [0:511] in1;
VpReg [0:511] in2;
VpDescriptor d1;
(* varprec = data *)
wire [0:511] w;

vpadd add1(in1, in2, w);

initial begin
 $VpSetDescriptorInfo(d1, 256, 96,`TWOS_COMPLEMENT,
 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,
 `SATURATION, 1);
 $VpAssocDescrToData(in1, d1);
 $VpAssocDescrToData(in2, d1);
#10;

in1 = 2;
in2 = 3;

#2;
in2 = w;
$display("in2 = %y\n", in2);

end
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 24

7.2 Butterworth LP IIR order 5
filter using operands of type
VpFCartesian.

The type VpFCartesian consists of two fields of type real making
the execution faster than when using objects of types whose for-
mats can be modified at run time, as in the example in 7.3.

The error is measured as a vector distance between the output
and the ideal output. The frequency spectrum of the output is dis-
played in both cartesian and polar coordinates.

This step is typically used to make sure that the algorithm works
properly.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 25

module top;

parameter SIZE = 32 * 32;
parameter ORDER= 6;

VpFCartesian in[-ORDER+1:SIZE-1], out[-
ORDER+1:SIZE-1], idealOut[0:SIZE-1];
VpFPolar in_polar[0:SIZE-1], polar_s;

real a [0:ORDER-1];
real b [0:ORDER-1];
real t[0:ORDER-1], s[0:ORDER-3];

real delta;

integer i, j, k;
real distance;

initial begin

/**********************************
1. Load input in in.Re and load ideal output
in idealOut.Re
 Notation:
 a) sampling_rate: time passed between loading
consecutive values in in.Re.
 b) SIZE: number of samples
 c) delta: 2*Pi/SIZE is a constant chosen such
that values $VpSin(n*delta*j)
 with 0 <= j < SIZE represents a sinusoid as
function of time with frequency freq =
((sampling_rate/2)/SIZE) * n, in other words
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 26

within the time span of the collection of all
SIZE samples, there are n complete periods of
the sinusoid.
2. Initialize ORDER number of values of the
history of in and out for the filter to oper-
ate in best conditions.

The values are chosen to be zero in this case.
Other values may be better in other circum-
stances.
***********************/
delta = (2*$VpGetPi()) / SIZE;
$InitM(in, (($I1 <= 0) ?
 0.0 : $VpSin(delta * $I1) +
 $VpSin((SIZE/4)*delta*$I1)/10), 0.0);
$InitM(idealOut, $VpSin(delta * $I1)/10, 0.0);
$InitM(out, 0.0, 0.0);

/*************************************
3. Load coeficients of Butterworth IIR LP fil-
ter with passband: 0-500 Hz (assuming a sample
rate of 8000 samples /sec) effective order= 5
*****************************/

a = { 1.6411125E-4, 8.205562E-4, 0.0016411124,
0.0016411124, 8.205562E-4, 1.6411125E-4 };
b = { 1.0, -3.7314737, 5.693888, -4.420512,
1.7411026, -0.277753 };
/*********************************
4. Perform filtering according to the speci-
fied coeficients and initial values of histo-
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 27

ries of in and out
************************************/
for (k=0; k < SIZE; k = k+1)
begin
 t[ORDER-1] = a[ORDER-1] *
 in[k-ORDER+1].Re;
 for (j = ORDER-2; j >= 0; j = j - 1)
 begin
 t[j] = a[j] * in[k-j].Re + t[j+1];
 end
 s[ORDER-3] = -b[ORDER-1]*
 out[k-ORDER+1].Re - b[ORDER-2] *
 out[k-ORDER+2].Re;
 for (j = ORDER-4; j >= 0; j = j - 1)
 begin
 s[j] = s[j+1] - b[j+1] * out[k-j-1].Re;
 end
 out[k].Re = t[0] + s[0];
end
/**************************************
5. Display sampled values - in[].Re
**************************************/
for (j = 0; j < SIZE; j = j + 1)
begin
 $display("sampled value[j]=%e\n", in[j].Re);
end

/***
6. Display ideal output values - idealOut
**/
for (j = 0; j < SIZE; j = j + 1)
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 28

begin
 $display("ideal output[%d]=%e\n", j,
 idealOut[j].Re);
end

/***********************************
7. Display filtered values - out
***********************************/
for (j = 0; j < SIZE; j = j + 1)
begin
 $display("filtered output[%d]=%e\n", j,
 out[j].Re);
end
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 29

/*********************************
8. Compute distance between filtered output
and ideal output vectors
******************************/
distance = $VpDistAbsSum(out, idealOut)/SIZE;
$display("Mean distance between filtered out
and ideal out samples = %e\n", distance);
distance = $VpDistAbsMax(out, idealOut);
$display("Maximum distance between filtered
out and ideal out samples = %e\n", distance);

/***********************************
9.Display frequency spectrum of input/sampled
 values - in
*************************/
$VpFft(in, 0, SIZE-1);
for (j = 0; j < SIZE/2; j = j + 1)
begin
 $display("in[%d] Re=%e, Im=%e\n", j,
in[j].Re, in[j].Im);
end
$display("finished display of freq dom of
input\n");
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 30

/***********************************
10.a Display magnitude and phase of spectrum
of input/sampled values using array assignment
with implicit conversion from cartesian to
polar coordinates
**/
in_polar = in;
for (j = 0; j < SIZE/2; j = j + 1)
begin
 $display("in_polar[%d] Mag=%e, Ang=%e\n",
 j, in_polar[j].Mag, in_polar[j].Ang);
end

/************************************
10.b Display magnitude and phase of spectrum
of input/sampled values using assignment to
scalar with implicit conversion from cartesian
to polar coordinates
*******************************/
for (j = 0; j < SIZE/2; j = j + 1)
begin
 polar_s = in[j];
 $display("polar_s[%d] Mag=%e, Ang=%e\n", j,
 polar_s.Mag, polar_s.Ang);
end
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 31

/********************************
11. Perform $VpIfft on the content of in vec-
tor. The result must be close to the sampled
input. This is just a check for the accuracy
of $VpFft and $VpIfft system tasks for the
given number of bits used (precision)
**/
$VpIfft(in, 0, SIZE-1);
for (j = 0; j < SIZE/2; j = j + 1)
begin
 $display("should be close to in[%d] Re=%e,
 Im=%e\n", j, in[j].Re, in[j].Im);
end

/***********************************
12. Display frequency spectrum of ideal
 output - idealOut
*******************************/
$VpFft(idealOut, 0, SIZE-1);
for (j = 0; j < SIZE/2; j = j + 1)
begin
 $display("idealOut[%d] Re=%e, Im=%e\n",
 j, idealOut[j].Re, idealOut[j].Im);
end
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 32

/**********************
13. Display frequency spectrum of filtered
output - out
***************************/
$VpFft(out, 0, SIZE-1);
for (j = 0; j < SIZE/2; j = j + 1)
begin
$display("out[%d] Re=%e, Im=%e\n", j,
out[j].Re, out[j].Im);
end
end /*initial*/
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 33

7.3 Butterworth LP IIR order 5
filter using VP objects of fixed
and floating point formats.

The size of the fields of the formats are changed at runtime in
order to find an acceptable solution.

 This example uses FinSimMath's VpCartesian and VpPolar sca-
lar and vector types in conjunction with $VpSin, $VpFft, $VpIfft
to demonstrate the implementation of a low pas Butterworth fil-
ter and other DSP processing.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 34

module top;

‘include “finsimmath.h”
parameter SIZE = 32 * 32;
parameter ORDER= 6;

VpCartesian in[-ORDER+1:SIZE-1], out[-
ORDER+1:SIZE-1], idealOut[0:SIZE-1];
VpPolar in_polar[0:SIZE-1], polar_s;

VpReg [0:511] tmp;
VpReg [0:511] a [0:ORDER-1];
VpReg [0:511] b [0:ORDER-1];
VpReg [0:1] d1;
VpReg [0:511] t[0:ORDER-1];
VpReg [0:511] s[0:ORDER-3];

real acceptableDistance;
integer notDone,j,k, sizeInt, sizeDec, format;
real delta, dist;

initial begin
$VpAssocDescrToData(s, d1);
$VpAssocDescrToData(t, d1);
$VpAssocDescrToData(in_polar, d1);
$VpAssocDescrToData(polar_s, d1);
$VpAssocDescrToData(a, d1);
$VpAssocDescrToData(b, d1);
$VpAssocDescrToData(in, d1);
$VpAssocDescrToData(out, d1);
$VpAssocDescrToData(idealOut, d1);
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 35

/*********************************
Because the there is a distorsion in phase due
to a delay between the filtered output and the
ideal output, the distance depends on the num-
ber of samples per time unit, becoming smaller
with more samples.
*************************************/
if (SIZE == 1024) acceptableDistance = 0.032;
else if (SIZE == 4096)
 acceptableDistance = 0.012;
else begin
 $display(" acceptableDistance is not yet
known for SIZE=%d. Use operands of type real
to determine accptableDistance \n", SIZE);
end

for (format = 0; format < 2;
 format = format + 1)
begin
 if (format == 0)
 begin
 $display("Try Floating point\n");
 sizeInt = 7;
 sizeDec = 14;
 end
 else
 begin
 $display("Try Two's complement\n");
 sizeInt = 7;
 sizeDec = 14;
 end
notDone = 1;
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 36

while (notDone)
begin
 if (format == ‘FLOATING)
 begin
 $VpSetDefaultOptions(sizeInt,
 sizeDec, `FLOATING,
 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,
 `SATURATION, 1);
 $VpSetDescriptorInfo(d1, sizeInt,
 sizeDec,`FLOATING,
 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,
 `SATURATION, 1);
 end
 else
 begin
 $VpSetDefaultOptions(sizeInt, sizeDec,
 `TWOS_COMPLEMENT,
 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,
 `SATURATION, 1);
 $VpSetDescriptorInfo(d1, sizeInt,
 sizeDec, `TWOS_COMPLEMENT,
 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,
 `SATURATION, 1);
end
$display("Trying sizeInt=%d, sizeDec=%d\n",
sizeInt, sizeDec);

Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 37

/*********************************
1. Load input in in.Re and load ideal output
in idealOut.Re
 Notation:
a) sampling_rate: time passed between loading
consecutive values in in.Re.
b) SIZE: number of samples
c) delta: 2*Pi/SIZE is a constant chosen such
that values $VpSin(n*delta*j) with 0 <= j <
SIZE represents a sinusoid as function of time
with frequency
freq = ((sampling_rate/2)/SIZE) * n, in other
words within the time span of the collection
of all SIZE samples, there are n complete
periods of the sinusoid.
************************/

delta = (2*$VpGetPi()) / SIZE;
for (j = 0; j < SIZE; j = j + 1)
begin
 in[j].Re = $VpSin(delta * j) +
 $VpSin((SIZE/4)*delta*j)/10.0;
 idealOut[j].Re = $VpSin(delta * j);
 in[j].Im = 0.0;
 idealOut[j].Im = 0.0;
end
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 38

/*********************************
2. load coeficients of Butterworth IIR LP fil-
ter with passband: 0-500 Hz (assuming a sample
rate of 8000 samples /sec) effective order= 5
*************************************/
$display("Loading coeficients\n");
a[0] = 0.00016411125; b[0] = 1.0;
a[1] = 0.0008205562; b[1] = -3.7314737;
a[2] = 0.0016411124; b[2] = 5.693888;
a[3] = 0.0016411124; b[3] = -4.420512;
a[4] = 0.0008205562; b[4] = 1.7411026;
a[5] = 0.00016411125; b[5] = -0.277753;

/*******************************
3. Initialize ORDER number of values of the
history of in and out for the filter to oper-
ate in best conditions. The values are chosen
to be zero in this case. Other values may be
better in other circumstances.
********************************/
$display("Initialize History\n");
for (j = 0; j < ORDER; j = j + 1)
begin
in[j-ORDER+1].Re = 0.0;
out[j-ORDER+1].Re = 0.0;
end

Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 39

/********************************
4. Perform filtering according to the speci-
fied coeficients and initial values of histo-
ries of in and out
*********************************/
$display("Perform Filtering\n");
for (k=0; k < SIZE; k = k+1)
begin
 t[ORDER-1] = a[ORDER-1] * in[k-ORDER+1].Re;
 for (j = ORDER-2; j >= 0; j = j - 1)
 t[j] = a[j] * in[k-j].Re + t[j+1];
 s[ORDER-3] = -b[ORDER-1]*
 out[k-ORDER+1].Re - b[ORDER-2] *
 out[k-ORDER+2].Re;
 for (j = ORDER-4; j >= 0; j = j - 1)
 s[j] = s[j+1] - b[j+1] * out[k-j-1].Re;
 out[k].Re = t[0] + s[0];
 end

 for (j = 0; j < SIZE; j = j + 1)
 $display("filtered output[%d]=%y\n", j,
 out[j].Re);

 $display("Compute Distance\n");
 dist = $VpDistAbsSum(out, idealOut)/SIZE;
 $display("distance between filtered out and
ideal output = %e\n", dist);
 if (dist > acceptableDistance)
 begin
 $display("For sizeDec = %d the distance is
%e, while acceptable is %e\n",
 sizeDec, dist, acceptableDistance);
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 40

 sizeDec = sizeDec + 1;
 end
 else
 begin
 $display("sizeInt = %d\n sizeDec = %d\n
lead to a distance of %e <= acceptable dis-
tance of %e", sizeInt,sizeDec, dist,
 acceptableDistance);
 notDone = 0;
 end
end
end
end
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 41

7.4 Performing Fft and Ifft trans-
forms
module top;
parameter SIZE = 1024 * 1024;
integer k;
real delta;
VpFCartesian xformFC [0:SIZE - 1];
initial begin
#1;
$InitM(xformFC, (($I1==3) ? 7.0 : 0.0), 0.0);
$display("xformFC[3].Re=%e\n",xformFC[3].Re);
for (k = 0; k < 1; k = k + 1)
begin
 $VpFft(xformFC, 0, SIZE-1);
 $VpIfft(xformFC, 0, SIZE-1);
end
/*$PrintM(xformFC, "%e");*/
$display("xformFC[3].Re=%e\n",xformFC[3].Re);
end
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 42

7.5 Partitioning for Multi-
threaded processing
Example of using the View as construct in order to write code
that is independent of the actual location of the data, within a
multi-dimensional array. One application is the coding of multi-
threaded video processing, where the code ought to remain
unchanged when the number of partions change.
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 43

module top;
parameter W = 2;
parameter SIZE = 8;

/* main data */
real Orig[SIZE-1:0][SIZE-1:0];

/* copied partition of main data */
real M3[SIZE/2+1:0][SIZE/2+1:0];

/* sliding windows into the copied partitions
 enable writing code that is independent of the
 actual location of the data */
view real VM3[W:0][W:0] as
 M3[VM3_base1+$I1][VM3_base2+$I2];
integer VM3_base1, VM3_base2;

/* view for writing data back into Orig */
view real V3M[SIZE/2-1:0][SIZE/2-1:0] as
 Orig[M3_base1+$I1][M3_base3+$I2];
integer M3_base1, M3_base3;

initial begin
 $InitM(Orig, ($I1*10000+$I2));
end

/* example of processing partition M3, using the
 sliding window VM3 */
initial begin
#20;
 /* copy from the appropriate partition in Orig
into M3. Set to 0 data located out of the range
of the original matrix. */
$InitM(M3, (($I1 == SIZE/2+1) ||
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 44

 ($I2 == SIZE/2+1))? 0 :
 Orig[SIZE/2-1+$I1][SIZE/2-1+$I2]);
 $InitM(M3, Orig[M3_base1+$I1][M3_base2+$I2]);
 $PrintM(M3, "%e");

/* Set the base of the sliding window */
 VM3_base1 = 2;
 VM3_base2 = 2;

/* modify data in M3 */
VM3[W][W] = 99.0;

/* set the base of V3M for writing into Orig */
 M3_base1 = SIZE/2;
 M3_base3 = SIZE/2;

/* write into Orig via the view V3M */
$InitM(V3M, M3[$I1+1][$I2+1]);

$PrintM(Orig, “%e”);
 end
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 45

7.6 Finding the inverse of a matrix
 module top;
parameter SIZE = 16;

real AR[SIZE-1:0][SIZE-1:0];
integer mone;

initial begin
 /* populate AR into a Pascal Matrix */
 $InitM(AR, (($I1 == 0) ? 1 :
 (($I2 == 0) ? 1 : (AR[$I1-1][$I2] +
 AR[$I1][$I2-1]))));
 $PrintM(AR, "%e");

 /*compute the inverse twice */
 AR = AR**(-1);
 $PrintM(AR, "%e");
 AR = AR**(-1);
 $PrintM(AR, "%e");
end
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 46

7.7 Finding the inverse of a large matrix of
type real
This example works on FinSim 10_0_6 and subsequent versions.
This example shows how to invert matrices of 4000x4000 elements
of type real. The matrix is inverted twice and three values are
checked to see that they remained unchanged after the two inver-
sions.

module top;

parameter SIZE = 4000;

real AR[0:SIZE-1][SIZE-1:0];

real IR[SIZE-1:0][SIZE-1:0];

real r;

initial begin

 $InitM(AR, ($I1 == $I2) ? 1 : ($I1 == 2*$I2)
? 7 : 0);

 IR = AR**(-1);

 IR = IR ** (-1);

 $display("IR[%d][%d]= %e\n",16,8,IR[16][8]);

 $display("IR[%d][%d]= %e\n",16,9,IR[16][9]);

 $display("IR[%d][%d]= %e\n", 200, 100,
IR[200][100]);

end
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 47

7.8 Finding the pseudo inverse of a matrix

module top;

real Q[3:0][2:0];
real S[3:0][0:0];
real P[2:0][0:0];

 initial begin
 Q = {1.0, 1.0, 1.0,
 1.0, 2.0, 1.0,
 1.0, 1.0, 2.0,
 2.0, 1.0, 1.0};
 S = {6.0, 8.0, 9.0, 7.0};

 $PrintM(Q, "%e");
 $PrintM(S, "%e");

 P = S/Q;

 $PrintM(P,"%e");
 end
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 48

7.9 Checking Special Conditions

module top;
‘include “finsimmath.h”
VpReg [0:511] in1;
VpReg [0:511] in2;
VpReg [0:511] out;
VpDescriptor d1, d2;

initial begin
$VpSetDescriptorInfo(d1, 150, 96,
`TWOS_COMPLEMENT,
`TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,
 `SATURATION, 1);
$VpSetDescriptorInfo(d2, 20, 10,
`TWOS_COMPLEMENT,
`TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF+
 `WARNING,
`SATURATION+`WARNING, 1);

$VpSetDefaultOptions(256, 96,
`TWOS_COMPLEMENT,
`TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,
`SATURATION, 1);

$VpAssocDescrToData(in1, d1);
$VpAssocDescrToData(in2, d1);
$VpAssocDescrToData(out, d2);

#10;
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 49

/*overflow at assignment to smaller integer
part */
 in1 = 2323;
 in2 = in1 **10;
 $display("in2 = %k\n", in2);
 out = in2;
 $display("out = %k\n", out);

#10;
 /* underflow at assignment to smaller frac-
tional size */
 in2 = 0.00000000000001;
 $display("in2 = %k\n", in2);

 out = in2;
 $display("out = %k\n", out);
end

always @(out_Overflow)
begin
 $display($time,,"out: Overflow = %d\n",
out_Overflow);
end

always @(out_Underflow)
begin
 $display($time,,"out: Underflow = %d\n",
out_Underflow);
end

always @(out_PeakNrOfIntBitsUsed)
begin
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 50

 $display($time,,"out: PeakNrOfIntBitsUsed =
%d\n", out_PeakNrOfIntBitsUsed);
end

always @(out_NrOfDecBitsLost)
begin
 $display($time,,"out: NrOfDecBitsLost =
%d\n", out_NrOfDecBitsLost);
end

endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 51

7.10 Fast Autocorrelation
 This example shows how to perform fast autocorrelation on two
vectors of type VpFComplex. Objects of this type are complex num-
bers in cartesian coordinates, with fields of type real.

module top;
 parameter SIZE = 1024;
 VpFCartesian t1[2*SIZE -1:0],
 t2[2*SIZE -1:0],
 prod[2*SIZE -1:0];
 integer j;
 initial begin
 #1;
 $InitM(t1,
 ($I1 < SIZE-1) ? 0 :
 $I1-SIZE+1, 0);
 $PrintM(t1, "%e");
 $InitM(t2,
 ($I1 < SIZE) ? 0 : 2*SIZE-$I1, 0);
 $PrintM(t2, "%e");
 $VpFft(t1, 0, 2*SIZE-1);
 $VpFft(t2, 0, 2*SIZE-1);
 for (j = 0; j < 2*SIZE; j = j + 1) begin
 prod[j] = t1[j] * t2[j];
 end
 $VpIfft(prod, 0, 2*SIZE-1);
 $PrintM(prod, "%e");
 end
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 52

7.11 Inverting a 4,000,000 by
4,000,000 sparse matrix in Fin-
SimMath
 This example works on FinSim 10_05_33 and subsequent versions.

This example shows how to invert sparse matrices of
4000000x4000000 elements of type real.

The matrix is inverted twice and all non-zero values on one line and
one column are displayed to see that they remained unchanged after
the two inversions.

On a single 32 bit Pentium 1800MHz processor this example run in
less than 100 seconds. Note that this is the simplest matrix to invert.
Nevertheless, this example shows that large matrices can be handled.

Also note that lines and columns of sparse matrices can be displayed
with system tasks $PrintLine and $PrintCol, as well using system
tasks SpReadNextNzElemInLine and SpReadNext-
NzElemInCol.
module top;

parameter integer size = 4000000;

real MReal1 [size-1 : 0][size-1 : 0];

real MRInv [size-1 : 0][size-1 : 0];

integer found, lin, col, idx;

integer i;

real r;
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 53

initial begin

 /* declaring sparse matrices */

 $ToSparse(MReal1);

 $ToSparse(MRInv);

 /* initializing matrice */

 for (i = 0; i < size; i++)

 begin

 MReal1[i][i] = 1;

 if ((2*i < size) && (i != 0)) begin

 MReal1[2*i][i] = 7.0;

 end

 end

 /*inverting twice */

 MRInv = MReal1 **(-1);

 MRInv = MRInv ** (-1);

 $display("********displaying all non-zero
values on one line***********\n");

$PrintLine(MRInv, 4*size/10);
 $display("********displaying all non-zero
values on one line one element at a
time***********\n");
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 54

 idx = -1;

 found = $SpReadNextNzElemInLine(MRInv,
4*size/10, col, idx, r);

 while (found) begin

 $display("MRInv[%d][%d]=%e\n", 4*size/10,
col, r);

 found = $SpReadNextNzElemInLine(MRInv,
4*size/10, col, idx, r);

 end

 $display("********displaying all non-zero
values on one column*********\n");

$PrintCol(MRInv, 2*size/10);
 $display("********displaying all non-zero
values on one column one element at a
time***********\n");

 col = 2*size/10;

 lin = -1;

 found = $SpReadNextNzElemInCol(MRInv, lin,
col, r);

 while (found) begin

 $display("MRInv[%d][%d]=%e\n", lin, col,
r);

 found = $SpReadNextNzElemInCol(MRInv, lin,
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 55

col, r);

 end

 $display("********displaying norms
*********\n");

 max = $VpNormAbsMax(MRInv);

 sum = $VpNormAbsSum(MRInv);

 $display("max=%e, sum=%e\n", max, sum);

end
endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 56

7.12 Solving a non-linear differen-
tial equation in FinSimMath
This example shows how a differential equation with variable coef-
ficients can be solved in extended in Verilog. The equation models

the force of a tennis ball hitting a wall by using extensively the work
presented by S.J. Haake, M.J. Carre and S.R. Goodwill at the Uni-

versity of Shefield, Dept. of Mech. Eng.

This example works on FinSim 10_01_31 and subsequent ver-
sions.

This example models the force of a tennis ball hitting a wall.
The main model is that of a spring-mass system governed by
the formula: m*y(2) + c*y(1) + k*y = 0, with y = 0 and y(1) =
speed of ball hitting the wall. There are three forces that push
against the wall:

1) the spring force, spring_force is due to the ball being com-
pressed, with spring_force = k*y.

2) the damper force, damper_force is due to the viscuosity of
the ball with damper_force = c*y(1)

3) the flux force, flux_force is due to the portion of the ball that
loses it's speed during a small time slice. This flux_force is m0
* speed / delta_time, where m0 = m*s1/s2, where s1 is approx.
the surface of a cillinder having as base the flattened portion of
the ball and as hight the current speed y0 * delta_time and s2 is
the surface of the ball, which makes

flux_force = y0*y0*m* $VpSqrt(2*r*x0-x0*x0)/(2*r*r),
where y0 is the speed at a particular time, m is the total mass of
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 57

the ball, r is the radious of the ball, and x0 is the position of the
center of the ball with respect to its original position when the
impact began.

The algorithm solves the problem for speeds of 10m/s and 30m/
s in a loop. In an inner loop the algorithm adjusts the non-linear
coefficients and solves the equation for a number of steps with
constant coeficients. It then performs again the same steps for
the new value of the loop variable (named slice), which auto-
matically adjusts which portion of the data is provided to the
differential eq. solver via the "view..as" mechanism. Note that
by using the "view..as" mechanism no data transfer is needed
during the computation, the data being computed "in place".

The results are displayed via the $PrintM task as well as via the
$VpPtPlot task.

module top;

parameter real alpha = 1.65;

parameter real r_total_time = 0.005;/*
seconds */

parameter nr_pts_per_ct_coef = 10;

parameter nr_slices_per_sec = 10000;

parameter nr_pts_per_sec =
nr_pts_per_ct_coef * nr_slices_per_sec;

parameter integer Size =
r_total_time*nr_pts_per_sec;

parameter real r_size = Size;
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 58

parameter real h = 2*r_total_time/r_size;/
* set double of sampling period */

parameter real m = 0.057;/* kg */

parameter real A = 16000000;/* N/m**2 */

parameter real k0= 21000; /*N/m*/

parameter real B = 3500; /* Ns/m */

parameter real r = 0.032; /*m (radius of
ball)*/

parameter order = 2;

parameter nrEq = 1;

localparam integer nr_slices =
nr_slices_per_sec * r_total_time;

real Fe[0:0][0 : Size], x[0:0][0 : Size],
y[0:0][0 : Size];

reg [0 : 3199] ressymb[0 : 0];

real coef[0 : 0][0 : 2];

view real x_ct [0:0][0:nr_pts_per_ct_coef]

 as x[0][$I2+slice*nr_pts_per_ct_coef];

view real Fe_ct
[0:0][0:nr_pts_per_ct_coef]

 as
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 59

Fe[0][$I2+slice*nr_pts_per_ct_coef];

view real y_ct [0:0][0:nr_pts_per_ct_coef]

 as y[0][$I2+slice*nr_pts_per_ct_coef];

real ar_f_spring [0:nr_slices];

real ar_f_damper [0:nr_slices];

real ar_f_flux [0:nr_slices];

real ar_f_total [0:2][0:nr_slices];

integer i, j, isZero, total_time;

integer slice = 0;

real k, c, x0, y0, v0;

initial begin

 #1;

 coef[0][0] = m;

 $InitM(Fe, 0.0);

 for (j = 0; j < 2; j = j + 1)

 begin

 /* find total force for two speeds: v0
= 10m/s and v0 = 30m/s */

 v0 = (j == 0) ? 10 : 30;
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 60

 x[0][0] = 0;

 y[0][0] = v0;

 isZero = 0;/* kludge for nulifying
results for when the model does not apply*/

 for (slice = 0; slice <= nr_slices;
slice = slice + 1)

 begin

 x0 = (x_ct[0][0] > 0) ? x_ct[0][0] :
-x_ct[0][0];

 y0 = y_ct[0][0];

 c = 4.0*B*x0*(2.0*r-x0);

 k = (slice < 2) ? 120000 : (k0 +
A*(x0**alpha));

 coef[0][1] = c;

 coef[0][2] = k;

 ar_f_spring[slice]= x0*k;

 ar_f_damper[slice] = y0*c;

 if ((y0 > 0) && (x0 > 0)) begin

 ar_f_flux[slice] = y0*y0*m*

 $VpSqrt(2*r*x0-
x0*x0)/(2*r*r);

 end
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 61

 else ar_f_flux[slice] = 0;

 ar_f_total[j][slice] =
ar_f_spring[slice] +

ar_f_damper[slice] +

ar_f_flux[slice];

 ar_f_total[j][slice] = (isZero) ? 0:
((ar_f_total[j][slice]>0)?ar_f_total[j][sl
ice]:0);

 if ((slice != 0) &&
(ar_f_total[j][slice] < 15

 /* after this value the spring
model no longer applies*/)) begin

 isZero = 1;

 end

 /* call dif eq solver. The array x
will contain the solution and the

 array y will contain the first
derivative of x.

 Note that the initial conditions
have been already placed in x[0]

 and y[0].
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 62

 */

 $VpLODE(order, nrEq, h,
nr_pts_per_ct_coef+1,

 x_ct, coef, Fe_ct, y_ct,
ressymb);

 end

 ar_f_spring[nr_slices]=
x_ct[0][nr_slices]*k;

 ar_f_damper[nr_slices] =
y_ct[0][nr_slices]*c;

 ar_f_total[j][nr_slices] =
ar_f_spring[nr_slices] +

ar_f_damper[nr_slices] +

ar_f_flux[nr_slices];

 ar_f_total[j][nr_slices] =
(ar_f_total[j][nr_slices]>0)?ar_f_total[j]
[nr_slices]:0;

 end

 $PrintM(ar_f_total,"%e");

 total_time = r_total_time*1000;

 $VpPtPlot("standalonePlotMLSample.txt",
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 63

2, h,

 "Tennisball (0.057kg, 0.032m)
Force pushing the wall)", total_time,

 "Time (ms)", "Total Force(N)",
0, nr_slices, ar_f_total,

 "10m/s", "30m/s");

 end

endmodule
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 64

7.13 Mixed Symbolic and
Numeric Computations

This example works on FinSim 10_05_28 and subsequent ver-
sions. It shows symbolic expression evaluation, differentiation,
integration, and Laplace Transform.

module top;

`include "finsimmath.h"

 VpReg [0:200]r;

 VpReg [0:200]val_vp;

 VpDescriptor d1;

 real val;

 reg [0:30000] symbExpr1;

 reg [0:30000] symbExpr2;

 real x;

initial begin

 $VpSetDescriptorInfo(d1, 5, 7, `FLOATING,

`TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION+`WARNING,
1);

 $VpSetDefaultOptions(5, 7, `FLOATING,
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 65

`TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION+`WARNING,
1);

 $VpAssocDescrToData(r, d1);

 $VpAssocDescrToData(val_vp, d1);

 r = $VpGetPi()/6;

 x = $VpGetPi()/6;

 symbExpr1 = "$VpSin(r*x)";

 $Eval(symbExpr1, val);

 $display("$Eval(%0s) = %e, for x = %e, r =
%y\n", symbExpr1, val, x, r);

 symbExpr2 = $Dif(3, symbExpr1, "x");

 $Eval(symbExpr2, val_vp);

 $display("*** SDif(SDif(SDif(%0s))) is %0s
and its value for x = %e is %y\n",

 symbExpr1, symbExpr2, x, val_vp);

 symbExpr2 = $Int(1, symbExpr1, "x");

 $Eval(symbExpr2, val_vp);
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 66

 $display("$SInt(%0s) = %0s and its value
for x = %e is = %y\n",

 symbExpr1, symbExpr2, x, val_vp);

 symbExpr2 = $Lap(1, symbExpr1, "x");

 $display("$LaplaceT(%0s) = %0s\n",
symbExpr1, symbExpr2);

 symbExpr1 = "x**4 * $VpSin(x)";

 symbExpr2 = $Lap(1,symbExpr1, "x");

 $display("*** Lap(%0s) is %0s \n",
symbExpr1, symbExpr2);

end
endmodule // top
Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 67

8. Concluding Remarks
FinSimMath is an extension of the Verilog IEEE 1364 language
having, as described in chapter 8 of FinSim's User's Guide avail-
able at www.fintronic.com (click on Support, FAQ, download
FinSim's Users Guide).

In this era of globalization, when teams from different parts of
the world co-operate on the same project it is more cost effective
to have the ESL, RTL and Gate level descriptions done in the
same environment and even in the same language.

Modeling adaptive systems that gracefully degrade is possible
only with support for dynamic format changes. True ESL design
space exploration mandates runtime changes of formats and size
of format fields.

FinSimMath supports the modeling at the mathematical level
(differential equations, matricial calculus, FFT/IFFT, autocorre-
lation, mixed symbolic and numeric computations, etc.) both of
the circuit to be designed and of the environments in which the
models of such circuits must be verified.

FinSim already supports a large subset of FinSimMath and Fin-
tronic USA intends to provide FinSimMath support also in con-
junction with other standard compliant Verilog/SystemVerilog
simulators.

Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 68

Copyright (c) 2010 by Fintronic USA, Inc. All rights reserved. 69

	Tutorial on FinSimMath(TM)
	(an extension of Verilog(R) for Mathematical Descriptions)

	FinSimMath(TM)
	an extension of Verilog(R) for Mathematical Descriptions

	OUTLINE
	1. Introduction
	2. Overview of FinSimMath
	3. Basic FinSimMath
	3.1 Declaring VP objects/data
	3.2 Declaring VP descriptors
	3.3 Associating VP descriptors to VP data
	3.3 Semantics of the fields of VP descriptors
	3.4 Modifying fields of VP descriptors
	and
	$VpSetDefaultOptionsfield1, field2, field3, field4, field5, field6). 3.5 Assigning Verilog expressions to VP objects.
	3.6 Assigning VP objects to Verilog objects
	3.7 Displaying VP objects
	3.8 Logical and Arithmetic Operators Verilog standard arithmetic operators (+,-,*,/,**) may be used in conjunction with variable...
	Verilog standard logical operators (>, >=, <, <=, ==, !=) may be used in conjunction with variable precision objects.
	4. Hierarchical Evaluation of Expressions
	5. Cartesian and Polar Types
	5.1 VpCartesian
	5.2 VpPolar
	5.3 VpFCartesian
	5.4 VpFPolar
	5.5 Operations on types Cartesian and Polar +, -, *, /, **,==, != 5.6 Mixing Cartesian and Polar operands in the same simple expression
	6. Multi-dimensional Arrays
	6.1 +,-,*,/, **
	6.2 Accessing copied data via position system tasks
	6.3 Creating views of multi-dimensional data
	7. Practical Exercises Written in FinSimMath
	7.1 Example of Verilog modules exchanging VP values
	7.2 Butterworth LP IIR order 5 filter using operands of type VpFCartesian.
	7.3 Butterworth LP IIR order 5 filter using VP objects of fixed and floating point formats.
	7.5 Partitioning for Multi- threaded processing
	7.6 Finding the inverse of a matrix
	7.7 Finding the inverse of a large matrix of type real
	7.8 Finding the pseudo inverse of a matrix
	7.9 Checking Special Conditions
	7.10 Fast Autocorrelation
	7.11 Inverting a 4,000,000 by 4,000,000 sparse matrix in FinSimMath
	7.12 Solving a non-linear differential equation in FinSimMath
	7.13 Mixed Symbolic and Numeric Computations
	8. Concluding Remarks

